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Possible Methods of Measuring the Length 
of Sub-Picosecond Electron Bunches 

in the Frequency Domain 

Gerald P. Jackson 
Fermi National Accelerator Laboratory, MS 341, P.O. Box 500, Batavia IL, 605 10 

ABSTRACT 

The traditional method of measuring extremely short electron beams using streak 
cameras begins to become problematic and expensive at bunch lengths at a 
picosecond and below. In this paper a few alternatives, based on the differential 
measurement of the Fourier spectrum of the longitudinal charge distribution of a 
bunch, are suggested and evaluated. 

FOURIER TRANSFORM OF BUNCH PROFILES 

Let us assume that the longitudinal beam current profile is Gaussian in shape and 
described by the equation (Q=Ne) 

t* 

It,(t) = (1) 

If Fourier transforms are defined by the equations 

and 

F(o) = If(t) eiot dt 
-cc 

f(t) = & j F(o) eCiot dw 
-m 

then the beam current in the frequency domain is described as 

-102 J 
Ib(OJ)=Qe * ’ 

(2) 

(3) 

Therefore, in the frequency domain the power spectrum of the bunch shape is also 
Gaussian, but with an angular frequency width of or,, = l/o,. For M bunches each of 
charge Qb constrained to occupy buckets of length To, 

h(t) = & Jle 

-(t-m?)* 

% (5) 
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The Fourier transform of (5) yields a frequency spectrum of 

dt (6) 

which can be reduced to 

It@)=Qbe 
-3 0,’ co2 

The summation at the end of equation (7) is a form factor which describes the 
modulation of the frequency spectrum around harmonics of the bunch passage 
frequency. Figure 1 contains a plot of this form factor normalized to the number of 
bunches for M=l, 13, and 84 (cases commonly found at Fermilab). 
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Figure 1: Sum of exp[iwmTo] from m=l to m=M (the total 
number of bunches) divided by the number of bunches. 
The top horizontal line is M=l, the wider modulated curve 
is M=13, and M=84 is the narrowest curve. 

The shape of the curve described by equation (7) for M=l is almost identical to that 
of equation (4) in the regime where the rms bunch length or is less than 1/6th the 
length of the RF bucket To. Figures 2 and 3 compare equations (4) and (7) at the 
bunch passage frequency and 3 times that frequency, respectively. 
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Figure 2: Spectral current density vs oz/Tc for o=wu. The 
lower curve is from equation (4), and upper from 
equation (7). 
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Figure 3: Spectral current density vs or/T0 for 0=3n&. 
The lower curve is from equation (4), and upper from 
equation (7). 



REAL TIME BUNCH LENGTH MONITOR 

In order to build a real time bunch length monitor, it is necessary to measure the 
value of the curve described by equation (4) at two different frequencies. The first 
frequency is the RF frequency, since the spectral current at this frequency (in units of 
DC beam current) is relatively insensitive to bunch length (see figure 2) and is 
independent of the number of bunches in the accelerator. The second frequency is 
chosen such that orw G 1, so that the influence of tails is minimized while providing a 
measurable difference from the current at the lower frequency (see figure 3). Again, 
the exact frequency of the second line should be a harmonic of the RF frequency to 
insure that the spectral current (normalized to the DC current in the accelerator) is 
independent of the number of bunches. 

Figure 4: Schematic sketch of a standard real time bunch 
length monitor based on measuring the ratio of amplitudes 
at two frequencies of the bunch current spectrum. 

As shown in figure 4, one uses a longitudinal, broadband beam current monitor of 
some type to measure the beam signal. Splitting this signal and filtering each half at 
the RF fundamental frequency and harmonic N of the RF frequency oo, the amplitude 
difference of two logarithmic detectors’ yields an intermediate signal 

or 
s = Ln[Ib&)] - Ln[Ib(Nwo)] 

S = [-$s$o~] -[-~N*cr$o~] 

Solving for or and performing an analog square root function using an Analog 
Devices AD532 semiconductor chip, the bunch length is described by the equation 

. (9) 

Therefore, a real time (~10 kHz analog bandwidth using the AD532) bunch length 
monitor insensitive to beam current and number of bunches has been created. Figure 
5 is the result of applying equations (8) and (9) to the data in figures 2 and 3. All that 
is required is to measure two components of the beam spectral current. Monitors 
based on this principle are used in most of the Fermilab accelerators2. Despite the 
assumption that the beam profile is Gaussian, remarkably good agreement with the 
rms size of the actual waveform is generated. 
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Figure 5: Calculated bunch length vs. input length using 
equations (8) and (9). Actually, the signals applied to 
equations (8) and (9) were generated using both equations 
(4) and (7), and are both plotted (and are completely 
indistinguishable). 

ELECTROMAGNETIC BUNCH LENGTH MONITOR 

According to equation (4), to measure the length of a bunch which has a length of 
one picosecond or less, frequencies on the order of 1/2x0, E 200 GHz must be 
detected. Since structures resonating at such high frequencies are so small, they must 
usually be attached to the wall of the beam pipe at a port through which 
electromagnetic energy can be coupled. Figure 6 contains a sketch of a possible 
geometry for a bunch length monitor. 

..*. . .i;$$$%$+$r;-Bearn .C...... 

Figure 6: Sketch of a possible bunch length monitor in 
which two cavities with greatly different resonant 
frequencies are coupled to the image currents on the inside 
wall of the vacuum chamber via slots. 
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The problem with this scheme when employed on bunches from electron guns is 
the distribution of electromagnetic fields from a non or mildly relativistic charge 
distribution. The approximate rms width of the longitudinal distribution of image 
charges on a perfectly conducting wall of radius R from a charge of relativistic energy 
y and relativistic velocity p is 

Figure 7 contains a sketch of the electric field lines (and surface charge distribution) 
generated by a single particle. Because the beam pipe is assumed to be perfectly 
conducting, the longitudinal component of the electric field lines must be zero at the 
surface. 

Figure 7: Field and image charge density distribution on 
the inside surface of an infinite conductivity beam pipe. 
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Figure 8: Effective bunch length measured at the beam 
pipe wall for a 1 psec bunch at different energies. The 
beam pipe radii were 4 cm (top), 2 cm (middle), and 1 cm 
(bottom curve). 
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Using elementary kinematic relationships, the product of energy y and velocity p 
can be rewritten as the beam momentum PO divided by the mass of the electron mo. 
Convoluting over the actual bunch length, the effective bunch length measured by any 
detectors at the surface of the pipe is 

(11) 

Figure 8 contains a plot of this effective signal width as a function of beam 
momentum assuming a 1 picosecond rms beam width and typical beam pipe radii of 
1, 2 and 4 cm. Below a momentum of 10 MeV/c it becomes very difficult to correct 
the measurement value to recover the true beam width. Therefore, for RF guns whose 
output momentum is significantly less than 10 MeV/c, it is necessary to find some 
other means of measuring a spectral signature of the beam. 

TRANSIENT SYNCHROTRON RADIATION SPECTRUM 

In the body of a dipole magnet the spectrum of the synchrotron radiation is 
determined by the time the observer is illuminated by the Lorentz contracted light 
cone swinging by following the trajectory curvature of the magnet. In the case where 
the length of the magnet field is short in comparison with this “body” illumination 
time, frequency spreading of the synchrotron radiation spectrum occurs?. 

c.:^-^l^ m E@mn 

Figure 9: Proposed bunch length monitor using transient 
synchrotron radiation generated by the sharp beam-beam 
deflection of the picosecond bunch passing the low energy 
electron beam. 

The transverse beam-beam deflection generated by a picosecond long bunch on a 
low energy electron beam can be described by an effective dipole field of peak 
magnitude Bo and longitudinal position dependence 

2 

2 

B(z) = Bo e az (12) 

The loss of the factor of two in the denominator of the exponential argument comes 
from the fact that the picosecond long bunch is moving and not a fixed magnet. The 
spectral density of the light from such a deflection is4 
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e3 
KU = ~&b-t.+%)* exp 

0 0 
(13) 

The argument of the exponential determines the range of energies required by the 
electron beam in the monitor to generate light in the wavelength band of available 
detectors (l-10 pm). Figure 10 is a plot of the energy of the monitor beam required to 
make the argument of the exponential in equation (13) unity as a function of the 
length of the picosecond long bunch under test. For sub-picosecond applications a 
very straightforward gun with an output energy of 5 MeV or less could be used for 
this monitor. The only outstanding questions are technical: Should one use head-on 
beam-beam collisions or impact parameters of 20 of the test bunch? What detector 
technology is required to measure the fluxes from such a monitor? 
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Figure 10: Relativistic energy y needed to make the 
argument of the exponential in equation (13) unity for 
observation wavelengths of 1 pm (top) and 10 t.trn (bottom 
curve). The top curve would suggest that a monitor beam 
of 10 MeV is sufficient to create a useful bunch length 
detector. 

OPTICAL TRANSITION RADIATION 

When a relativistic beam traverses a thin foil, optical transition radiation5 is 
produced. The frequency spectrum of the forward and backward propagating 
radiation is identical to that of the beam current 6. Coupling the electromagnetic 
radiation from this transition through the metal surface of the foil into two resonant 
detectors at 200 GHz and 20 GHz (for example), one could construct the same bunch 
length monitor shown in figure 6 but without the pulse spreading phenomena caused 
by the low energy nature of some of the beams which need to be measured. 
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